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I. INTRODUCTION

The study of an important and challenging problem in science and engineering

has been the understanding of the strength and fracture behavior of stressed solid

systems. This is particularly true In the failure behavior and its prediction in

viscoelastic material systems. Both the structural and functional application of these

materials demand a better understanding of their behavior and failure mechanisms.

When sufficiently large tensile stresses are associated with these materials, various

modes of failure develop. To elucidate these, one common mode of response, namely

crazing under an applied simple stress, must first be understood. Major advances and

breakthroughs in the crazing behavior in microscopic and macroscopic levels of

understanding will yield tremendously useful information not only theoretically but also

practically. Considerable technological and scientific significance is attached to this

proposed endeavor. The initiation and propagation of crazing as quasifracture, the

time dependent fracture strength of oriented polymers, the associated molecular

orientation and ultimate strength in and around a craze, the interaction of crazes in

polymeric and composite systems are just some of the features to be understood. The

determination of the time dependent fracture strength of polymers and composite

systems, the displacement field and the stress distribution in the vicinity of craze-crack

transition region as well as the propagation behavior of craze and crack are important

problems to be solved prior to the consideration of many other relevant topics.

Currently a firm foundation has been established. It appears that continued research

in the relevant outgrowth topics will result in a truly fruitful understanding of the subject

matter. 
4
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II. BACKGROUND INFORMATION AND OBJECTIVES, with REFERENCES

Advanced reinforced plastics, consisting of a polymer matrix and fibres,

continue to generate great interest in their application to high performance structural

components. Fracture of these composite systems may result from flaws in fibres or

matrix as well as the failure of the bonds. Thus the strength of any such composite is

governed by the time dependent strength characteristics of the matrix, the fibres and

the bonds. Because of the difference in the mechanical behavior of the three

constituents of composites, up to now many strength criteria have been considered

and developed by scientists and engineers all over the world as reflected by, for

example, several recent references [1 through 3].

The studies of time-dependent failure of composites have been relatively scarce

in spite of the strong dependence of the failure characteristics on time. The

formulation of the models must now be based upon the microstructura peculiarities of

deformation, the molecular orientation, temperature and time. Aside from the

phenomenological models, perhaps, statistical models should also be considered

concurrently so that they may reinforce each other's findings and development.

REFERENCES

1. Handbook of Composites Series (Strong Fibres, Structure and Design, Failure
Mechanics of Composites and Fabrication fo Composites). Edited by A. Kelly and Yu.
N. Rabotnove, North Holland (1985).

2. Proceedings of International Symposium on Composite Materials and
Structures. Edited by T. T. Loo and C. T. Sun, Beijing, China (June, 1985).

3. M. F. Kanninen and C. H. Popelar. Advanced Fractures Mechanics. Oxford
University Press, New York; Clarendon Press, Oxford (1985).
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Ill. MICROMECHANICS OF POLYMERS AND COMPOSITES

The phenomenon of crazing and its relation to some fracture analyses are

considered as follows:

The formation of a craze comes about from a physical transformation in the

deformation processes of the microscopic material molecules under tensile stress.

The transformation takes place from a homogeneous deformation to a craze

configuration when a critical condition is reached. Subsequently, the craze boundary

propagates as a function of applied stress, time, temperature, physical and chemical

influence as well as the actual microstructural changes subjected to geometrical

constraints. As a result, usually minute voids are generated among oriented

molecules and the density of the medium in the crazed region is nonuniformly reduced

whereas the bulk of the homogeneous material body deforms more uniformly. The

interface boundary layer enveloping crazes of many solid materials is capable of

being drawn and transformed into bundles of highly oriented molecular domain

structure in the craze region. Further stressing will eventually initiate craze-crack

transition. It appears necessary to take these physical variations into consideration in

any mathematical modeling and formulation in analyzing the stresses from the time

when crazes incept to the time when they propagate and transform into real fractures.

The science of crazing, a quasifracture state, and subsequent cracking, a

fracture state, of solid material systems under tension has been making large strides in

the recent past. The crazing mechanism has been associated with molecular

orientation and fracture strength [1 to 5]. Subsequently various methods have been

utilized to determine and confirm the molecular mechanism with respect to craze

formation and fracture in thermoplastics [5,6]. Essentially under tensile stresses

certain solid materials deform from sites where high stress concentrations are created

"1-. ...- nnm4mm n mnmm ma~mmll l
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and crazes develop. Because of geometrical constraints and energy requirements,

the material molecules orient themselves in the direction of stressing with voids among

them. As stated earlier, the presence of oriented polymeric molecules in a craze

region bounded by surprisingly smooth interface layers is visualized as an actual

physical phase transformation in the deformation processes from one orientation state

to another depending upon the magnitude and rate of applied tensile stress [8],

material characteristics as well as, of course, temperature and physical and chemical

environments, etc., surround the solid body. As a result, the mechanical behavior of

the material is greatly affected by the macroscopic geometry and the distribution and

interaction of the individual crazes as well as the microscopic molecular configuration

and voids within each craze region and along its immediate boundaries enveloping

the area. Macroscopically the development of crazes and their distribution can be

detected statistically by laser diffraction technique [9]. The geometry of an individual

craze which can be studied by focused laser beams [10] is of primary importance in

understanding the processes of its initiation and propagation as well as the

deformation, quasifracture-fracture transition, and eventually the fracture behavior of

the medium. Knowledge of craze initiation and geometry helps in determining the

craze displacement field, the stress distribution and the craze-crack transition and

propagation under load [11,12]. An eventual understanding of the true mechanism of

molecular strength and fracture behavior of a simple solid matrix and a complex

composite system can be obtained if fundamental microscopic information is utilized in

macroscopic analyses.

In a craze the highly strained molecular bundles act as boundary tractions with

great strength, any governing mathematical formulation must include this feature for

any adequate analysis. Crazes of different forms and properties have occurred in
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polymeric materials [13,141 and other solid systems including even single crystals [15].

An analysis is highly desirable and may be useful for studying general solid systems.

Both long- and short-range programs may be considered. It appears fruitful that

emphasis be placed on the study of micromechanics of individual craze-crack

transition, the source of failure under various internal and external stresses for the

matrix and the composite systems.

The nature of the stresses in and around a craze-crack transition region is the

key to the understanding of the morphology and nucleation as well as the propagation

of crazes and cracks. The first attempt in calculating the state of macroscopic tensile

stress field in the direction of the applied load as a function of craze length has been

based upon a model with an assumed craze boundary displacement as a crack

opening in an infinite elastic sheet [16]. The stresses were calculated as though the

craze were a continuum and the craze boundary developed no stress perpendicular to

the direction of applied stress. The solution of the two-dimensional-homogeneous

biharmonic equation for a semi-infinite elastic medium due to the application of an

external pressure to the surface has been used [17,18]. This implies that the craze

behavior is independent of the craze medium [18,191 under stress. The solutions were

obtained using a Fourier transform technique [20] or a complex variable method of

analysis [19,21,22]. With proper assumed boundary conditions the latter method of

approach gives probable stress and displacement fields surrounding a craze. A

model for craze growth has also been considered with the creep of craze material as

the cause of craze propagation. The craze growth was found to be linear with respect

to the log of time [191.

The aforementioned stress analyses have been made essentially on the basis

of the classical elasticity theory for a homogeneous elastic medium with either an
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assumed stress distribution for certain portions of a crack without considering any time

dependency.

The development of crazing is not only a function of stress but also a function of

time [23,24]. Using the current theory and by taking into consideration the isotropic

and anisotropic material constants the mathematical model describing the crazing

mechanism have been successful [25].

REFERENCES

1. J. A. Sauer, J. Main and C. C. Hsiao, J. Appl. Phys. 20, 507 (1949).

2. C. C. Hsiao and J. A. Sauer, J. Appl. Phys. 21, 1071 (1950).

3. C. C. Hsiao, J. Appl. Phys. 30, 1492 (1959).

4. C. C. Hsiao, Section IV in Fracture Processes in Polymeric Solids, Interscience,
John Wiley, 529 (1964).

5. S. R. Kao and C. C. Hsiao, J. Appi. Phys. 35, 3127 (1964).

6. S. Rabinowitz and P. Beardmore, CRC Critical Reviews in Macromolecular
Science 1, (1972).

7. R. P. Kambour, J. Poly Sci--Macromolucular Reviews 7, 1 (1973).

8. R. W. Truss and G. A. Chadwick, J. Mat. S'. 11, 1385 (1976).

9. C. C. Hsiao, Appl. Phys. Lett. 23, 20 (1973).

10. C. C. Hsiao, J. Appl. Phys. 48, 1168 (1977).

11. A. P. Wilczynski, C. H. Liu and C. C. Hsiao, J. AppL. Phys. 47, 4301 (1976).

12. A. P. Wilczynski, C. H. Liu and C. C. Hsiao, J. App. Phys. 48, 1149(1977).

13. H. H. Kausch and M. Dettenmaier, Polymer Bulletin 3, 565 (1980).

14. M. Dettenmaier and H. H. Kausch, Polymer Bulletin 3, 571 (1980).

15. K. F. Ha and Z. Z. An, J. Appl. Phys. 55, 95 (1984).

. . ...... ..... .. . . -- , m d i m i i I mI



Crazing In Polymeric and Composke Systems
Annual Technical Report, Apri 30, 1988 7

16. A. C. Knight, J. Polymer Sd. 34, 1845 (1965).

17. H. C. Krenz, 'Relationships Between Structure and Micromechanics of Solvent
Crazes in Glassy Polymers," Ph.D. thesis, Cornell University, 115 (January,
1977).

18. N. Verheulpen-Heymans, J. Polymer Sd. Phys. 14, 93 (1976).

19. N. Verheulpen-Heymans and J. C. Bauwens, J. Mat. Si. 11, 7 (1976).

20. B. D. Lauterwasser and E. J. Kramer, Philo. Bull. 3,565 (1980).

21. N. I. Muskelishvili, Some Basic Problems of the Mathematical Theory of
Elasticity, P. Noordhoff Groningen, 333 (1953).

22. T. Y. Fan, Foundations of Fracture Mechanics (in Chinese), Jiangsu Scientific
and Technical Publisher, Jiangsu (December, 1978).

23. S. S. Chem and C. C. Hsiao, J. AppL Phys. 52, (10) 5994 (1981).

24. S. S. Chem and C. C. Hsiao, J. AppL Phys. 53, (10) 6541 (1982).

25. S. S. Chem, Z. D. Zhang and C. C. Hsiao, J. Poly. Sci. Phys. 23, 2579 (1985).

26. C. C. Hsiao and S. R. Moghe, Characterization of Random Microstructural
Systems, Proceedings, International Conference on Structure, Solid
Mechanics and Engineering Design in Civil Engineering Materials,
Southampton, England, 1969, John Wiley, London, Part I, 95 (1971).

27. V. S. Kuksenko and V. P. Tamuzs, Fracture Micromechanics of Polymer

Materials, Martinus Nijhoff Publishers, 202 (1981).

28. S. S. Chern and C. C. Hsiao, J. Appl. Phys. 53, 6541 (1982).

29. Z. D. Zhang, S. S. Chern and C. C. Hsiao, J. Appl. Phys. 54,5568 (1983).

IV. PROGRESS DURING THE FIRST YEAR (See Appendix)

"Noncontinuum Craze-Crack Transition"



Crazing in Polymer and Composke Systems
Annual Technica Report, Apri 30, 198 8

V. OUTLOOK FOR THE SECOND YEAR
(Work to be considered for publication)

1. "Crack-Induced-Craze"

The analysis of the crack-induced-craze in polymers is believed to be a

fairly general phenomenon in fracture studies. This work will deal with the use

of a viscoelastic boundary element method for analyzing a polymer quasi-

fracture. A time dependent boundary stiffness will be considered and the

viscoelastic solution in the time domain may be obtained by applying the

collocation Laplace inversion technique. Using these methods, the

quasifracture problem with time dependent stiffness fractions in a two-

dimensional case may be analyzed. Both the craze opening displacement

profile and the envelope stress distribution around a craze can be computed.

This will pave the way in evaluating the propagation history of both the crack

and the craze. Results thus obtained may be compared with those obtained by

previous considerations such as the use of Dugdale model and the concern on

the stress concentration phenomenon.

2. "Crazing as Quasifracture"

Before any real fracture develops under stress in polymeric or composite

systems, it seems that a fairly general picture common to most solid systems,

crazing incepts first. Following the previously stated craze-crack transition and

crack-induced-craze, the initiation of crazing is simply a special case. In the

absence of crack the craze as quasifracture has been studied by many

scientists. Since the boundary element method has become recently a

powerful technique for solving boundary value problems including some

nonlinear ones, it is especially important as a tool to be used in problems

-------------~-.
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having viscoelastic deformations and fractures. Therefore, it may be fruitful in

developing proper procedures for calculating the stress distributions around a

craze envelope.

3. "Time Dependent Fracture Strength of Solid Bodies"

Statistical theories in fracture kinetics constitute a very important role in

investigating the fracture strength of solids and their utilization in modem

engineering. In this short report, a review of some of the recent concepts and

models is provided. The main concern is the effect of the breaking stress on the

time-to-break. Based upon the consideration of the fraction of integrity of a

medium, a number of models have been evaluated and compared. Two basic

considerations used for evaluation and comparison are Zhurkov's empirical

kinetic relationship and Hsiao's statistical absolute reaction rate model. Other

considerations reducible from these two are also given for comparison. Using a

well-known numerical analysis method, it appears that the nonlinear

mathematical consideration is more realistic in describing the time-dependent

fracture strength behavior of a medium over any linear ones. The computed

results seem to fit reasonably well with the general observations.

VI. OUTLOOK FOR THE THIRD YEAR
(Research to be conducted)

1. "Temperature Variation during Polymer Failure"

This paper attempts to discuss the temperature variation during polymer

failure using a statistical absolute reaction rate theory. At fracture, the

temperature may increase or decrease depending upon a quantity named

fraction or integrity f and its rate I and accelerator f as well as a stress modifier

IP.
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For over a century, scientists and engineers have observed temperature

variations during loading and testing of solids. Most work in this area focused

on metallic systems: temperature changes during elastic and/or plastic

deformations, as well as theoretical investigations based on mechanics and

thermodynamics.

Using the statistical absolute reaction rate theory, the present work

attempts to analyze the temperature variation during polymer failure.

2. "Irradiation on Crazing Development"

The aerospace industry of the mid '80s is now being heavily involved in an

unprecedented number of space projects which require the use of a diverse

range of devices, all of which are exposed to much higher levels of radiation

than the ones inside the earth's atmosphere. Polymeric materials are in

common use although it is known that changes in their molecular structure are

induced when exposed to high energy irradiation. The effects are not the same

for all polymeric systems since some of them may degrade, others are induced

to crosslinking and still others may crosslink to a saturation point and then

degrade. In all cases, the mechanical properties are affected which implies

changes on the performance and longevity of the material system.

At present there is a need to understand the mechanism responsible for

these alterations as well as a model from which analysis and prediction of the

polymer crazing behavior in environments exposed to radiation.

3. "Three-Dimensional Crazing"

Polymers and polymeric composites usually fail by first developing crazing

on the surface of the material system. Internal crazes can also be initiated when
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sufficient and necessary conditions exist. The time-dependent craze failure

process, whether two-dimensional or three-dimensional, may be characterized

by several stages: deformation, development of microporosity, craze initiation,

craze-crack transition and propagation until complete failure occurs. The

interrelationship among the applied stress, craze initiation, time and

temperature has been established and a fairly general time-dependent theory

on craze initiation in viscoelastic media has been formulated. This craze

initiation criterion is three-dimensional. It would be highly desirable to examine

this new criterion and analyze the craze in three-dimensions.

VII. POSSIBLE FUTURE TOPICS AND THEIR IMPACT ON POLYMERIC
AND COMPOSITE RESEARCH

"Analysis of Craze Interactions"
"Potential Energy Mimimization of Composite Matrix"
"Potential Energy of Fiber Reinforced Composite System"
"Elasticity Constants of Composites"
"Thermal Coefficients of Composites"

The aforementioned individual descriptions are some immediate projects to be
completed and some others to be explored. Whenever possible time and temperature
dependent stress analyses need to be introduced in the constitutive modeling of the
mechanical behavior of composite systems at micro- and macro-structural levels. This
interest is in the development of analytical methods as tools. To be followed are some
experimental verifications and certain temperature data for quantitative analyses and
numerical computations. It is hoped that these projects will have an impact leading to
a better understanding of the effect of time and temperature on craze and fracture of
composite systems.
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VIII. SUMMARY

* Noncontinuum Craze-Crack transition yields damage behavior of composite

systems.
* Studies of time dependent failure of composite systems are important

practically and theoretically.

" Objectives are to obtain better understanding of the connection between

microstructure and mechanics.

" An overall view is given during the first year, in the published paper "Non-

Continuum Craze-Crack Transition."

* During the second year, several topical papers will be published. They are

related to:

"Crack-Induced-Craze"

"Crazing as Quasifracture"

"Time Dependent Fracture Strength of Solid Bodies"

• Some research work will be considered for the third year":

"Irradiation on Crazing Development"

"Three-Dimensional Crazing"

"Temperature Variation During Polymer Failure"

• Possible future research topics:

"Analysis of Craze Interactions"

• "Minimization of Potential Energy for Composite Matdx"

"Minimization of Potential Energy for Composite Systems"

"Analyses of Elasticity Constants of Composites"

"Analyses of Thermal Coefficients of Composites"

Six (6) copies of "Non-Continuum Craze-Crack Transition" are appended.
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C. C. ldol
Department of Aerospace Enineering and Mechanics
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ABSTRACT d I average diameter of fibril domain under craze

An approach studying the damage problem of envelope stress fI
polymeric and composite material systems is reviewed. It
appears highiy desirable to Investigate the strength and d2  average diameter of fibril domain under craze
fracture behavior of stressed sold systems by combining envelope stress 0C2
microstructural information with macro- mechanical
analysis. E(t) relaxation modulus

Starting from the initiation of crazes, the process of eij deviatorc strains
transition of a craze to crack in an Infinite viscoelastic
medium under stress is described. The actual physical
change of a craze into a crack is considered. Emphasis is t fraction of integrity of microstructura system
placed on the nature of its time dependency. The
enlargement of both craze and crack is analyzed under a G (t-V) time-dependent deviatoric relaxation modulus
simple state of tension. Suggestions on future research
upon temperature influence on crazing and craze-crack G2 (t-V) -dlendent dilatational relaxation
interactions are also given. modulus

NOMENCLATURE Hc(t) rate of energy absorption of quadrantal craze
A.B material constants 1,12 constants

I an integer constants (.oo < n < o)....
JIgcn J2 (-) time dependent bulk creep compliance

a(t) time-dependent length to high Stress level 02 function

b(t) time-dependent crack length measured from KI, K2 , K3, K4  differential or integral functions
center of symmetWy - (Wboxp(- URT $(t)] rate coefficient of breakage

c(t) time-dopendent craze-crack length measured
from center of symmetwy Kr - carexp(- U/RT -209(t)] rate coefficient of reformation

Cb(t) time-dpendent material creep compline kf(t) rate of kinetic energy of craze firl domains
function n integers

6f (t) rate of energy dissipation of crne fibril

domains ni, nj unit vdior(I. ,a. 2 or 3)

d(xt) ftime- and position-dependent diameter of NO time-dependen loa
craze fibdrIl domains

25



p infinitesimal elemental vector in reference z - x 3  third coordinate axis
frame XK (K - 1, 2 or 3)

oXo  constant inear thermal coefficient of
dp infinitesimal elemental vector in current frame expansion

Xk (k- .2or3) p, positive parameters
q craze-crack system depth measured from

center of symmetry 64 delta function

Fl universal gas constant 1b rc material constants

S magnitude of deviatoric stress tensor f orientation strain (- 1 i- e o)

S deviatoric stress tensor 'Ekl strain tensor (k, I - 1, 2 or 3)

s Laplace parameter 0,+ spherical coordinates

Sij deviatolc stresses O(T) temperature function

S(t) rate of creation of craze fibril domain surface %(x,t) time- and position-dependent draw ratio

T absolute temperature X I draw ratio beyond craze mid-section

t real time under stress 0Y

ta time when a(t) reaches position x X'm1 draw ratio of craze mid-section at
stress level CF I

tb time-to-break Xm2 draw ratio of craze mid-section at

tc craze initiation time stress level 02

f craze-crack transition time v strain ratio

th time when b(t) reaches position x & t+M n . 4(T) shift times

In nucleus incubation time n strain ratio

tx time for tip of craze-crack system to reach p density of the probability distribution
position x function of molecular orientation

t2  period of time fibril domains subjected to OY applied stress
StreS 02 YO(Tt) constant temperature, time-dependent stress

U activation energy
031, Crll principal stresses

Uf (t) rate of strain energy absorption of craze fibril
domains Ci, 02 craze envelope stress levels

Vf volume fraction of craze fibril domains oyb tensile strength or fracture strength

ui, j displacement gradients scI craze envelope stress

w(x,t) craze opening displacement measured from a ij stress tensor (I, I-1, 2 or 3)center of symmetryw cexnttr of smtry oii time derivative of the iseatropic stress tensorWo(x,t) -uz (x.O.t), Ixl -c c Mt. opening displaceent
mea01red from center of mety stress
crae-crack sytem as defind

xNx 1  coordinate along first odMte ais amin minimum breadng stress

XK oodtt in resfre e frame (Ka 1,2 orS) T time or dummy parameter

A coordinates in current frame (k-. , 2 or 3) 6(x, t) stress function at spatil position x and time t

i; 6



+(T) temeratre-te siftfuncionmacroscopic behavior. However. little attention has beon

*(T) tempratue-taie haftfunciongiven to mnake ts connection for many decades.
4a a One of the first analyses of the growth of crazing

was modeled as a continuum theory. Under a criticaltensile stress the linearly elastic material initiates crazes

frequency of motion In breaking process which are rate insensitive.2 Several other analyses using
elasticity theory have also appeared more recently.3,4
Similar to the analysis of a craze, many craze-related

O)r frequency of motion In reforming process crack problems have been investigated in viscoelastic
media.5-1 0 The intention of these studies was to take

PRELIMINARIES AND INTRODUCTION care of the energy dissipation which takes place in the
viscoelastic bodies not considered in the elastic theory.

For a long time, the analyses and prediction of the The time-dependent size and shape of cracks in linearly
mechanical strength behavior of engineering components viscoelastic isotropic continuum media have been
have been dependent mostly upon the application of analyzed. No microstructural nature is considered
continuum theories. This is true even in failure studies. however. Subsequently, approximate methods of
Elasticity, viscoelasticity, plastcit and linear elastic analysis have been presented and illustrated with a
fracture mechanics have dominated much of the analytical failure zone to obtain viscoelastic stresses and
investigation in solid mechanics. Failure criteria for displacements for elastic solutions. In the analysis, in
continuous media are considered to be independent with order to satisfy the developed governing equations, the
respect to the integrity of the media. There is no failure zone in the elastic problem is modified to meet the
introduction of noncontinuum damage mechanics based traction boundary condition for the crack faces. In
upon microstructural behavior, and discrete interactions general, the connection between the mechanics of the
among discontinuous flaws are not predictable. problem and the noncontinuum microstructural nature is

not made in these investigations. Therefore, in the
Recently, however, a new research direction has following example a noncontinuum craze-crack transition

emerged to connect microscopic material behavior with is analyzed in light of the actual microstructural behavior
macroscopic structural mechanics. This is motivated and the mechanics of the problem. Equations governing
primarily by the strong desire to design the constitution the rupture of the fibril domain structure in the middle of
and configuration of the microstructure of material systems the craze envelope surfaces subject to a uniform tension
for obtaining required macromechanical properties and is considered for an isolated craze in an infinite.
functions. In doing so, the integrity of the media is viscoelastic polymer sheet. Solutions yield both
included in failure criteria as well as in the constitutive information on the time dependent craze-crack transition
description. Micromechanisms and their interactions are and the displacement field around the craze-crack
taken into consideration in analyses aside from their time envelope profile describing the shape of the craze-crack
and temperature dependencies, region. Before this is done relevant noncontinuum

information is reviewed. Justifications and significance of
In failure investigations of solids and composite using the noncontinuum microstructure are described.

material systems, an important and challenging problem
in science and engineering has been the attempt to TIME DEPENDENT DEFORMATION AND
understand the strength and fracture behavior of stressed MECDEPENDENT ATION
solid systems. Either continuum or noncontinuum method MOLECULAR ORIENTATIONof aproch as eenuse tostudy the polm h
of approach has been used to appdhe problem. The By incorporating microstructural information, the
continuum dmage mehanicsatrcach deals with the deformation of a material system may be analyzed under
phenomenological behavior of min ber- stresses with the help of classical continuum theory. For
reinforced composites using quantities such as stress,strain, strain rate and tmeauefld. The some polymeric and composite systems, the deformationstaistai at adtemperature fields. h processes may be characterized to contain a molecular
noncontinuum approach deals with the individual micro- orientation mechanism with a microporosity sensitive to
damages such as minute Prazes and cracks formed in the time and temperature.
matrix together with the matrix-fiber Interfaces in
composites. Usual fied quantities appropriate to the A realistic medum may be represented by a system
problem as well as unusual parmeters am introduced to of microstructural elements which translate and rotate
effect a satisfactory solution. During such a course of under stressing. As shown in Figure 1, an elemental
investigation, both mic- and I n vector dP ir, the reference frame XK (K a 1, 2, or 3)
is connected. This nonconinuum soppprc relis on the t to dp in the current frame xk (k -1 , 2 or 3) under
mode of damage and mimomedhando. Ade ftm usual
parameters, the ulmate results can depend upon a time-dpndent load P(t). Then te stress tensor oij at
quantities such as a functf of the atlon of Integrity any point can be caiiated under certain conditions.
wdor a distributim fuction of molecu olenWio, W_
The following gives an example concerning a
i contiuum care1nk ad araze-crack tanson oij(ekI,T,t) a fp(e,+,qd) f(O,+,eTA)
behavior.

Orice the frst pubation of the pioneer work on
cralt, there was an Inadvertent aftmpt to cortnect the 11(0,+Tr C6,(
microstructure of the polymer medium with its
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P(t) where the nonlinear deformational behavior of an
isotropic continuum medium must be modified by the

7molecular orientation behavior to give a more realistic
combined constitutive description. This no doubt will
affect the further response of the material system to
stressing such as the initiation of crazes and the stability

dor instability of the system.
X2

ENERGY STATE, TEMPERATURE AND
0 '.X3 CRAZE INITIATION

At a constant temperature, the stability of the
homogeneous deformation of a real material system

X2  Xi under a simple uniform tension will eventually be upset at
some time when a specific energy state of the
microstructural system develops. The possible responses

Fig. I Molealar Enanglemren and Orientstion in efonMation may be described with the help of Figure 3. Under load,

where Eki is the strain tensor, TIME

T is the absolute temperature, 0 tn tc  tt

It is time, W IU

p is the density of the probability distribution w Z L
w 1Z 2 01

function of molecular orientation, - O
u.. ... -I. --.. SHEARING

e, + are spherical coordinates. U_ ""--AI

is the fraction of integrity of the .,

microstructional system, 0 .--- CRAZING

is the orientation strain (-1 -bc ),

'T is the axial stress in an element, CRACKING

ni, nj are unit vectors, and Fig. 3 Lowest Free Energy State and Deformation Behavior

dto equals ineded ) representing the solid angle the stability or instbiliy of a material system may best be

from which statistical expectation may be determined by its free energy state. The matera system
evaluated, readjusts its microstructural configuration to maintain its

lowest energy' state until certain dominating

Since the stresses are functions of the orientation characteristics develop. After an incubation period is
strain, it is likely that the constitutive behavior will be reached the material system may deform in shear
greatly affected. A simple illustration is shown in Figure 2 primarily as a result of the rotational motion of certain

microstructures. Thus, a simple shearing band develops
•Y 6in the system. The material system may develop cracks

-6 E as a result of a basically translational motion of the
S8 - microstructure including possibly the slipping and

5 rupturing of molecular bonds. This may be the simple
5 cracking of a material system. When a complex kinetic

46 -4 2 situation occurs, both the rotational and translational
5- -motion of the microstructure may take place. Crazing mayo• •3 69 develop as a result.

v For a two-dimensional craze, the iscnrronous

al 0 REN'T U-V- biaxial loCus for craze iniiton is given in Figure 4.

, _ ' .... p M ''" BE AV C L c : ompison. Detald informaion ca be found in an
" ---- 0 earlier rmforgca.12 Only the three-dimensional craze

00 1 2 3 4 5 init~atio criterion is given below in a series form with an
n an cne onstan and n an ifteW.

SIMPLE STRAWN

FiRg. 2 SW" Sws-tan Conomwo elv

Jii
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as for very long times. In between these times, the teie 4'(t)f(t) - . (4)
strength is linearly proportional to the logarithm of time.
The temperature effect on the time-dfpendent mechanical
strength is given in Figure 7 to show that temperature Is The functional relationship between * and t is
an important entity in this complex situation which must be *i 2 0
taken into consideration in the analysis for any material ' - -- [Kr( - Kb-] (5)
system.

Integration results in the time-to-break tb. With zero initial
LU ttime

II-
"dl' (6)

IIP[Kb+Kr(1-*/j)] )

Usually near fracture, Kr becomes unimportant, and
< the time-to-break may be approximated tof dl'

b t 7xp(U/RT))

/ which can further be simplified to
LOGARITHM OF TIME-TO-BREAK In tb t - Aexp(- 80) (8)

Fig. 7 Temperature Effects on Tune-Dependent with A and B as material constants.
Mechanical Strength Now let us consider the craze problem as shown in

Figure 6. Under a temperature and time dependent stress
Consider a material system composed of a large 0o(Tt) a three-dimensional craze may develop from the

number of randomly oriented similar molecular units or surface of a material body. In general the microstructure
elements which elongate and rotate in a stress field. In on the surface of the material body is composed of a
order to formulate a temperature- and time-dependent network of highly oriented fibril domains drawn out of the
failure criterion for such a material system, one can use envelope profile and separated by cavities. This
the quantity f(t), the time-dependent fraction of integriy. combined structure propagates along the surface of the
By calculating its time rate of change as follows: material body and penetrates into the body as indicated

respectively by c(T.t) and q(Tt) which are measured from
• , Kr(1-t) - Kbf (3) the center of craze at the origin 0. The stress at any point

in the material is designated as oY(xlx 2 ,x3,T,t) and the
where Kr - corexpl- U/RT - ('*(t)] is the rate coefficient of craze envelope stress by OFc(x ,x2,x3,T,t) as shown.
reformation of the disconnected units and Kb =
Wbexpl- U/RT + 0l'(t)], the rate coefficient of breakage of (3 Olo(T,t)
the connected elements, (Or and 6)b are respectively the
frequencies of motion with respect to forming and
breaking processes of these units, U is the activation
energy, R is the universal gas constant, and V and , are a(Xl, x2, x3 ,T,t)
positive parameters which modify the true axial stress (t) X
in each elemental unit.

The failing of a material system is when f c
approaches zero. In these formulations, Kr and Kb, are
both functions of temperature and the true stress in
individual elements. Once a stress 0 is applied to the C
material system, the energy state is altered and the time- F
to-break tb can be calculated. 0 b(Tt) c(T,t) x1

The fracture strength, the statistical mean strength
in the vicinity of any point in the system, has been Fig. 8 MDrstnaUOM o a Thee-DimeKsional
analyzed and found to be proportional to the modulus of a
individu elements, their length and the number of the
elements per unit volume. For an oriented ystem, the
fracture strength Is a function of deformation as briefly A stog itrs ha been the determination of the
reviewed In the previous section. For a fully oriented displacement W slo IA is not osly measured. This
system 1l uner a rmsmnt applied stress 0, we may noncontinuum feature s eaiy seen in Figure 9, In wdch
write the randomly oiented mreostructure is being drawn Into
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X3  exists a corresponding curve between tb and the applied
constant stress 0. When the applied stress varies with
time, one can use the linear summation damage rule
which states that the same number of damages
accumulate during identical time intervals. Thus the time-

,... - to-break is determinable by the equation:16

" ';;/ ":' X1  tb19

t.

0

By adopting this microstructural behavior, the
opening displacement w(x.t), the craze-crack systemn

1o length c(t) and the crack length b(t) in this craze-crack
transition problem can be calculated. To facilitate the

Fig. 9 Microstnuctural Formation of a Two-Dimensional possibility of obtaining numerical solutions, a three-step
envelope stress distribution, as shown in Figure 10, is

Craze-Crack System introduced:

highly oriented fibril domains. A schematic diagram of a 0 0 < x < b(t).
two-dimensional craze is given in Figure 10 to show thepertinent quantities. For simplicity In sequel x3 is O1c(x, t) = 0 b~t)< x < a(t)., (10)

replaced by z and x1, byx. 02 a(t)< x <cMt)

(10 It is hoped that this assumed step stress function will yield
good approximations in both the displacement field and

I I I I I Ithe lengths of the craze-crack system. 1

With the three-step envelope stress function, the
2 stress sustained by the fibril domains in the thin mid-

section where under certain conditions, failure has been
observed to occur more often, is

L0= Xm202 a(t) < x < c(t).Oc(Xt) =0 ' (11)

c °  L1 E Xm101 b(t) < x < a(t),

where Xm2o2 is the true stress born by the fibril domains
0 and X.m2 is the draw ratio at the stress region 02.

o0bt c(t) Similarly XtmI Of and Xmi denote the correspondingb(t) a(t) quantities under region 01.
Fig. 10 An idealized Two-Dimensional Craze-Crack System

withAssmedStepEnvlop Stess istibuionAs discussed earlier, under large stresses, the
with Assumed Step Envelope Stress Distribution time-to-break t0 can be obtained by first dropping Kr in (3)

to get (8). then introducing (11) in (9), one can obtain:
ANALYSIS OF CRAZE-CRACK TRANSITION

tb - Aexp(- BXmiO1)
Considering this two-dimensional model, an

analysis can be made to obtain the time dependent - t2(ex((Mm202-Xm1(1)j - 1) (12)
displacement field and the craze-crack lengths by
incorporating the microstructural behavior into the where t2 is the period when the fibril domains experience
macromechanics problem. the higher envelope stress 02.

Starting from the highly oriented fibril domain
structure in the craze region, the required time-to-break t To review briefly the time-dependent viscoelastic
is calculable based upon a perfectly oriented molecular problem, the opening displacement measured from the

system under a constnt stress 0.11,15 A general curve t center of symmetry of the craze-crack system in a
viscoolestic polymer shest can be obtained by usifg the

vs. 0 is given in Figure 6. The maximum applied stress is well known correspondence principle in linear
indicated by max. With reformation processes vlsoelasttY.
considered, the tensile strength of the material system
begins to deviate from the dotted curve. There exists a The field equations are:
minimum strength VW (lu m for which Ib goes to Wnft
asymptotically.14 Therefore for a given medium there Yij(X.A)=o0. (13)
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foxtuijtj(X.zt) + Ij.IX.zl$U (14) J~ JOa~.t) ll(x + 4ix1TZ)dt
0

It
S4(tQm f G1 (t-VC)d94(V). (15) 2 (4.0 +;~ f Oct) bInt~t 24

t

00t) - f G2(t-TU)de4(V), (16) Cb(t) -L-1 1(2(261+42))I/ (s20 ,(G,.+2ff))I (25)

with L- designating the Laplace inversion and barred
where OiS the Stress tensor, I+~ the strain telsor, Uj, quantities being In Laplace domains.
the displacement gradients. G, and G2 are respectively
the deviatoric and dilatational relaxation moduli of the If the strain ratio P' Is constant, Cb(t) redces to
original bulk medium, and the deviatoric stresses and-
strains are respectively Cb(t) . -1 1(2(1 - s2V2))/ s2EJ .(26)

SO)0(t) - 190(t ) (17) where E Is the relaxation modulus of the originalunorlented bulk polymer medium.

et~) -e~() ~ 8E~().(18) Taking into consideration the thickness of the
primordial layer from which the fibril domain stnxcture has

with I, j and k a x or z denoting dummy variables in two- been puffed out, the actual opening displacement of the
dimensional problems. The boundary conditions are system becomes
described as:

0YZx (x'o't) - o , )xI < c(t) (19) wQCXt) -Cb(O)O(X.t)+ f tb(t-V)G(x,v1dt

0

OIz(x,z~t) - 00(t),-t

dIXX(X,Z~t) =-a, -I as (X2.Z2)-.. (21) where txis the time when the tip of the craze-crack system
first reaches the point x, X is the draw ratio. Since the

CYxz(X,t) - o . - midsection is relatively thin in a craze, the X function can
he taken as

The opening displacement wO(xt) is defined by

w0(x,t) -U2 (X'o't) . lxi < c (t).- (22) ~ .XXt X- bftk <xc<at) (28)

To solve this viscoelastic problem. The Laplace 1)4M.~ a(t) <cxc< (t),
transform with respect to time is applied to all of the field
equations and the boundary conditions. The soluion to where X is the draw ratio outside the mid-section under
the transflormed equation can be found by using the well the envelope Stress 0 i. The Opening displacement
estabished complex variable conformal mapping method finally is obtained as
or the complex variable stress function method for elasti
medium. 

xt XQ.C(CX)
The time dependent solution of the problem is w J4t) (Ci2-1 (~t

obtained by Laplace inversion. This solution is valid only
if the boundary conditions are independent of time, i.e.,
-'I), b(t) and a 0 (x,t) remain unchanged. These + j d(t-Zi*(xx)drI,. for a(t) < x <c (t) , (29)
restrictions can be removed by using a sequence of0
loading and unloading st"ps17 which yields, W(Xlt) -!L *co " + 'I

f + (tw w~x~j , for b(t) <x-c aMt, (30)

where o(3

*(xt) . X~o(Z.) l~c+7-w(xt).W *()O(xt).j J (-v)(xT)dt
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_._ stress Oc(x,t) must balance the applied external load
corresponding to an applied simple tension cio to ensure
that the stress field within thn uncrazed bulk material is

for o < x < b(t). (31) finite everywhere for all time6 t. In mathematical form this
means:

where ta and th respectively denote the times when a(t)
and b(t) arrve at the point x. c

I ' dx = 0o. (36)

CRAZE AND CRACK LENGTHS 0 oc7(t)-x x

With regard to the length of the craze-crack system When the three-step envelope stress function (10) is
and that of the crack, suppose that the fibrl domain substituted in, it yields:
nucleation rate at the craze tips is proportional to the
growth velocity 4(t) of the system. Then the energy rate aXt) = c(t) - __2- __ sin- 1 ) (37)

arowt veoct c(t) sn( - l -j sin0 c(tT) (7
required for the growth of craze tip is rgd(t) and that for
the crack tip is rb6 (t), where ro and rb are material The other equation is from the consideration of the
constants. Based upon the assumption that the rate of nature of the failure of the craze material, which obviously
energy required for drawing the fibrils out of the craze provides a relation between the craze-crack system and
surface envelope is proportional to the .rate of creation of crack lengths,
the new fibril domain surface S (t), using the
proportionality constant rs, the following local energy b(t) = c (t - tb). (38)
balance equation can be witen as: It should be noted that the time-to-break th is spatially

lIc(t) - r,4(t) + Ib6(t) + ri'(t) dependent and it is evident that

+ 4(t)+ b(t) + k(t) (32) b(t) - c It - t(b(t))]. (39)

where Ac(t) is the energy absorption rate of the quadrantal
portion of the craze system, Of(t) is the strain energy RESULTS AND DISCUSSION
absorption rate of fibril domains, bf(t) is the energy Generally speaking, c(t) and b(t) can be obtained
dissipation rate by the craze fibrils, and if(t) is the rate of as functions of time by solving Equations (35), (37) and
kinetic energy due to the motion of the craze fibril (39). But it is still rather complicated because of the
domains. Of, 15f and Kf are negligible when compared unusual form of Equation (39).
with the other rate quantities in the quasi-static conditions. If the craze-crack system and the crack propagate
With this simplification and the terms expressed by steadily without drastically change in their propagating
elementary parameters defined earlier, the following speeds, Equation (39) can be simplified to the following
equations can be established. Since the stress each fibril form
domain sustains is Mic which equals ao/Vf if V is the
volume fraction: b(t) - c(t) - tb(t), (40)

c 8w(x,t) where tb has been evaluated and displayed as Equation
c(t) J Clc(xt) t dx, (33) (12), i.e.,

tb - Aexp(-BXmlC)c v , * xt
4 d(x,t) 8t dx, (34) t2 { exPB(X0 2  - mI ) 1}.

0 Usually, the distance c(t) - a(t) is relatively small since
where d(x.t) il the time and position dependent diameter it is associated with the region of stress concentration.
of craze fibril domains. Now using these, Equation (32) Thus t2 can be expressed as
becomes an implicit nonlinear differential equation of the
craze-crack system length c(t) and the crack length b(t) as t2 - (c -a) c. (41)
follows: Using the envelope stress profile proposed earlier,

c rV 1 ) - Equation (24) turns out to be

This implicit differential equation has three
unknown quantities, aft), b(t) and c(t) to be detemned. In bfc"-x - x 4czV
order to solve this equation, some mibsIdiary equations + o 1x In
are necessary. One of them is that17 the craze envelope + x' z-
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(02-01 )a In VC7-X - 4-y-yIntroducing the notations

C

01)i 42) a 47

a
Since the product of the average fibril domain diameter = O(x~t)dx,(8
and the envelope stress has been found to be constant, O bthat is, d ICY I d2(12 -Constant, thus let b

d d, bMt < x aMt), and substituting them into (44), we have

Ld. ) I 2 , at) <x <c(t), (4)K I (t) + KAI() + K36(t) + K4 = o. (49)

and noting that Vf - I/X and Equation (32) then, by where
substitution, Equation (35) becomes

8w K I =C(O)[ (12-l,)0(a~t) + 12808C +_I__ 50
(0r2-~.. f 7j dx

4,a K 2 -Cb(O)( 9 -8b+ I,[(bt) + 8 0b Dr, (1

+ 0--.dxr6+r6 (44) (1

Since O(c, t) - o, obviously, and (2

-wdx X- AC(o)[h(a-t) KC(Ol2alI)

t t

A. c + 12 j dt-')* ,dr + Ii I j b(tObdc (53)
dt j 40(xt)dx] 0

with 11 and 12 being constants, and

" f Cb(0)0(x~t)dx 4r-,X (54)

c t 4r,~ Xm2
"J J Nt TV1*A,I'pJ(.UA , (45) 1 2-2 Y X )mrl (5

The explicit forms of those quantities in expressions

a - xA -(bo 10bt tat of K's are given in the Appendix.

The calculations should be divided into two steps.
a First, the original craze p ropagaes during the absence of

+9-bf*(x,t)dxj acrack. This can becaiculted by simply setting b(t)-o0
dt in Equations (36) and (44), which degenerates into the

b case discussed earlier.1? After cetain time elapses, the
a fibril domains first produced in the mid-section of the craze

+ 5 C(O)*(x,t)dx brooks down and crack commences. Second, the crack
b comes Into play and the Eqution. (36). (41), (42) anid

(44) must be used to calculate simultaneously the
a t propagations for both the craze-crack system and the

+ 51 b(t-r)4'(x,T)dTdx). (46) rd

be Now to Illustrate the changes of a craze-crack system
in pofystyrno, a Voigt sold is taken as an example. The
material pupeles are tWWe to b0M-
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J(1) - 129 + 5.09[1 - exp(-t)] + 2.32[l - exp(-t /10)] complex phenomena are yet to be considered in the
future analyses.

+ 6.50 [1 - eXp(-t /102)1 * 12.7211 - exp(-t /104)]
+ 0.7111- exp(-t /105)) + 14.71 [1 - oxp(-t/10)J 1

+ 1.2 [1 exp-t 10?) - 1-5 m/MN 4.0-
w

A = exp(1 1) Secs. d, a20Onm, 2

B - 0.05 mz/MN, d2 a 10nm. ! RC I

X1. 2.0. r,. 0.125 J IM 2 , L .

Xm 2.5. r. -o.085 j/ M2 ,.. 4 es

,W -4, rb -300 j/ M2 .a.CAEI

v for polystyrene is 0,395. a constant, and the applied
stress is considered tobe 36MN / M2 ,that is: 0 o =3 6  0 -
MN / in2. In addition, based upon some experimental 0 20 40 60 80 100 I.im
evidence, (7 and 02 are assumed to be respectively CRAZE-CRACK LENGTH
40 MN / Mn2 and 80 MN / M2 for numerical calculations.

The normalized length of the craze-crack system Fig. 12 Nonlin~ear Crack and Craze-Crack Length Behavior
and that of the crack are shown in Figure 11. where the

60 9

50- '75

U 0N wU
2 0 6 0-zCwr

0 150 300 450 600 750 90004 0 1

TIME IN SECONDS TIME IN 102 SECONDS

Fig I1I Timne-Dependent Crack and Craze-Crack Fig. 13 Nonlinear Behavior of Normalized Craze Length
System Lengths

normalization is made with respect to the initial length of REMARKS AND SUGGESTIONS
the craze-crack system. The opening displacements at
different times are plotted in Figure 12. From the review of the connection between

microstructure and macromechanics; as well as the
For eas of visualization, the normalized craze analysis of the craze-cra transition it is seen that, in

length as a function of time Is also given In Figure 13. The general, the Complete fracture processes take time to
non-linear nature of the craze behavior is self-evident. develop and mature. Depending upon the degree of

energy absorption by the microstructure of a medium,
As can De seen from the calculatons, both the shear flow, craze or crack may occur. If craze occurs first,velocities of the craze-cc system and that of the crack then t transition from craze to crack Is "iel to be highly

become larger and larger. Thus further calculation Is not nonlinear. Results are important in studying the time-
accurate since the unsteady propagation gives rise to dependent strength and fracture behavior of polymeric
irregular growth, branching andor bifurcation. These and composite systems. By averaging all the microscopic
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behavior specific in each molecular orientation, a fracture___a
criterion may be established to analyze the time and + (02-01I ( fc -b -a4l
deformation dependent breaking strength of an oriented - a - 4a In
polymer Solid. Utilizing spherical funct~ons and the q2b-b4Ya
double Fourier series expansion, the statistical a2c2)(a In
microscopic behavior in the vicinity of a point in an -(CY 2-0)aIac 2 b+
oriented medium may be converted into several
symmetric tensorial terms. Then the time-to-break can be V---
synthesized and incorporated in calculating the -bli. - 2  (M3)
macroscopic behavior. By taking into account the Vc-b 2 + csa
individual values of the directional fraction of integrity, the
fracture time as well as the most probable direction of 8 10ba 1 . 1b c2-2b2

fracture initiation within any volume element in the -- w-O (sin- Z7- sin-11M)
medium can be predicted. However, results thus obtained Xc-F -
governs only the localized behavior of a material. For a 4c-a 2  b
layered composite system, the interactions among craze- a 0(a- - b -4bIn-

crack regions must also be determined. Perhaps a joint 4c -b c
distribution function of the characteristic parameters can Iaqc;!-b2 4Za
be introduced to obtain the final analytical result of the - (2-20 1)(b " _.
strength and fracture of a composite system. In addition, a4c-rb2 + b 4c-a 2-
since the material systems are viscoelastic, I c- 2

-(4

measurements of temperature fields in and around a -a In4c7-.b -+c- M
craze-crack system are extremely important in connecting cF-2+4c -a
the properties of the microstructure and the analysis of the
energy dissipation of the macromechanical behavior. 8 0ba 1a b

jC- ;F([C'2CYIT-ay + C1 2b21-

APPENDIX
(sin14 - sin-A~

Substituting Equation (42) into (47) and (48), yields
a 1 ___

bf dx=j[(0 2-Cy)04 C-a2  001 ~ 1 4iV2b

Y 1 b~7-bT ](sin-12 sin-1A) (0- b2
- 1

2 - (a0220 )C211 , (5

a b2) n abc - b4c7-_a2

+2(0-Y)a 2 na~c-b + b- c -a2  a0ac 1 c2-2aL a

- j8ba =X1((02-0I)(7  -- cos-I + a + 4a n,

- (2 0l 1-0 2)ab In.,4,.762 -. 4,, ac 2- 2F -

vrTb2+4.CT2aZ - cYa In a____- 4_T-

+ 2(cl -02)a2 in+ 20Wb2 lnti. (Al) c2 b.bc-a
c + alb In 4c2T-bb- - .47-a2T(M

c 1C2__Jo_ * n4 Pc-2 + 422 , (A6
J Odx - IO-0 1) a4C7-al. 0 Ib4c2i o- 1 .*Sb~(~

aaa a -C2 -2 Vc -a2

l 4c-T6 + b'4_c-__ bb I4c-b -b c -'

-~~'0 1(a
2+b2) fc- b 4~ -bI + b 4 cF-ay

4c27-b 2 
- 4cy a~ P-2- a2a(

*2(OrOra I,). (A2)

Differentiating (Al) and (A2 yiels ac X V((02-01) c 1

8*i 00 1 a b C2-2a2  a2  WrI4-i
8a ((r)(s n-s n)--- (Ora OT -0 -1
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ANALYZING POLYMER CRAZING AS QUASIFRACTURE

B. N. Sun and C. C. Hsiao

Dept. of Aerospace Engineering and Mechanics

University of Minnesota

Minneapolis, Minnesota

ABSTRACT

This paper deals with a viscoelastic boundary element method for analyz-

ing a polymer quasifracture termed earlier as a craze in polymers. A time

dependent boundary stiffness is considered on the quasifracture envelope sur-

face. The viscoelastic property of the glassy polymer is represented by a

generalized Kelvin model with multiple retardation times. According to the

linear viscoelastic correspondence principle, the associated elasticity solution

can be solved by applying the general integral boundary element method. Then

the viscoelastic solution in the time domain can be obtained by applying collo-

cation Laplace inversion transformation. Using these methods, the quasifrac-

ture problem composed of an isolated craze opening with time dependent stiff-

ness traction in a stressed rectangular plate is analyzed. The displacement

profile and the stress distribution around the craze envelope surface are com-

puted.
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INTRODUCTION

The craze or quasifracture behavior of glassy polymers has been studied

by many scientists using theoretical and/or experimental methods recently

[1,2,3]. Only a few papers reported the linear elastic quasifracture behavior

using numerical methods. L. Bevan [4] applied both the elastic finite-element

method and boundary-element method with linear boundary condition for investi-

gating the eraze problem. Recently, using the nonlinear finite element method,

the stress distribution around the envelope surface and the displacement pro-

file associated with a craze has been reported [5]. However, since the boun-

dary element method has currently become a powerful technique for solving

boundary value problems including some nonlinear ones, it is worthy of utiliz-

ing, as it has several advantages over the finite element method. The number

of unknowns in the calculating system depends only on the boundary discretiza-

tion rather than upon the discretization of the whole volume of the material

body as in the finite element method. The singular kernels in the integral

equations weigh the unknown quantities near a singular point more heavily as

compared with those far away and the resultant matrices are generally well

behaved. The physical quantities obtained by differentiation of the primary

variables such as the stresses obtained from displacements are determined

pointwise ixside and on the body. Thus there is less chance to have discontin-

uities. This is especially important in problems having viscoelastic deforma-

tions and, in particular, viscoelastic fracture mechanics problems [6]. In

addition, this method takes less computing time and yields greater accuracy as

compared with those problems analyzed using the finite element method under

somewhat similar situations. Therefore, in the case wherein highly localized

m m N m m ffrtt~--m - - - -
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stresses may exist, more elements can be introduced so that any possible sin-

gularities will not be suppressed by the analysis. As the quasifracture beha-

vior of crazing is important for studying engineering plastics and polymer com-

posites, in this paper, a viscoelastic boundary element method for analyzing

the polymer quasifracture and determining the displacement field has been dev-

eloped. In this attempt emphasis is placed on the procedural development of

the method. Actually measured displacement field obtained earlier has been

employed [3] in the computation.

It is well known that glassy polymers behave viscoelastically. Using the

correspondence principle in linear theory oT viscoelasticity, the quasifracture

behavior of a polymer can be calculated from the solution of an associated

elasticity problem by means of numerical method, then inversion yields the

required time dependent response. Therefore, in this paper the boundary ele-

ment method is applied to solve the associated elasticity problem in the

Laplace domain. By applying the numerical Laplace inversion technique devel-

oped by Schapery [7] and Cost [8), the associated elasticity solution can be

transformed from the Laplace domain back into the time domain. There are sev-

eral reports dealing with the use of the viscoelastic boundary element method.

For simple specific viscoelastic models, Takashi Kusama and Yasushi Mitsui [9]

developed an improved collocation method and applied the boundary element

method to solve a Kelvin viscoelastic model. Rizzo and Shippy [10] used the

direct boundary integral method to solve a'standard linear viscoelastic model.

Wang and Crouch [11] applied the displacement discontinuity boundary element

method and collocation inversion technique to solve a rock mechanics problem

represented by a Burgers model. In this paper the general boundary element

method together with the collocation inversion technique is used to solve an

isolated quasiffracture having a generalized Kelvin model behavior with multiple



retardation times. In using such a method the prescribed boundary condition is

either the displacement or the traction condition. For a quasifracture problem

the boundary condition on the craze envelope surface is prescribed in a stiff-

ness form. By considering the molecular orientation mechanism [12] of the

craze fibril domains, the boundary displacement of a craze envelope surface

may be represented by a convolution integral. Then the displacement field and

the stress distribution along a craze surface envelope can be calculated in

several time steps. It is, interesting to show that the calculated resulting

stress distribution along the craze envelope surface did not change very much

with respect to initial zero time and several hundred hours.

FUNDAMENTAL BOUNDARY VALUE PROBLEM

The governing equations for the quasifracture boundary value problem are

the equilibrium equations in terms of the stress components oij. relations

between displacements u i and strain components qij together with a set of con-

stitutive equations. The stress and displacement fields must satisfy the pre-

scribed boundary conditions on the craze envelope surface and other boundaries.

They are, in a rectangular coordinate system (O-x,,x,,x1 ):

Gijj (x,x3,t) = 0, (1)

C" (X1 X3,t) 1 ui,j(xl,x3t) + uj,i(x,.x 3,t)]. (2)

The constitutive equations can be written in integral form as:



eij(t) - J(t-r) dr. (3)

Ckk(t) Btf 1 LE- d-[.14f-(4

where A~t) and B(t) are respectively the creep compliance functions in shear

arnd isotropic dilation or bulk creep compliance; Okk and £kk are respectively

the hydrostatic stresses and strains by -implying the summation convention. Si

and e iiare respectively the deviatoric domponents of stress tensor o and

strain tensor c and are related with other stress and strain components -as

follows:

Sjj = Gjj - 6 ijukk- (5)

eij - Ei - 1 ick (6)

where 6..j are delta function3.

In a linear viscoelastic polymer, a very good approximation 13,13,1'41 for

the tensile creep compliance D(t) is obtainable using a generalized Kelvin

model composed of a series of' Voigt elements or- simply it can be mathemati-

cally represented In the following form:

D(t) D, + D4{1 -exp(--L) (7)
>_ I

------ --. .--



where D, and Dn are constants and Y. are discrete retardation times. Now if

one adopts the notation and definition that

(x1 ,x 3,s) = f(x.xs.t)e- s t dt. (8)

0

where f(xl,xs,s) is the Laplace transform of the time dependent function

f(x,,x3 ,t) with s as the Laplace parameter, then it can be shown that the shear

and bulk creep compliance functions can be obtained through Laplace inversion:

J(t) = L-'((s)) = L+(+ sv(s)) (s)] , (9)

B(t) = L '((s)) = L-' ( - 2sV(s))B(s)] , (10)

where v(s) is the Laplace transform of the time dependent strain ratio. it is

to be noted that in analyzing a problem involving the time dependent viscoe-

lasticity, v(t) is time dependent. The quantity Poisson's ratio in classical

theory of elasticity is meaningless in viscoelastic behavior, thus v(t) is

termed strain ratio. Experimental results [15] have shown that the strain

ratio v(t) became approximately a constant for long creep times. With this in-

foriation, the viscoelastic tensile relaxation modulus function E(t) can be

shown as:



7

L -W --L.-'1

S(D, + > DDn --S1)

n=1

In the craze region, oriented molecular domains and voids are formed as

shown schematically in Fig. 1. Since the domains are composed of groups of

connected fibrils of molecules, they bear load and are subjected to large

deformations. When a craze elongates its displacement field in the direction

of stressing also increases. While a part of the contribution of the displace-

ment field is because of the creeping of the fibril -domains, the major contri-

bution comes as a result of the drawing of the molecules from the bulk of the

polymer. This drawing mechanism coupled iith a simultaneous neckdown of the

fiber domains dominates the local well known crazing behavior composed of

molecular orientation mechanism and formation of porosities. A local strain

field c (-1 < c < - defined as X - 1 where X is the draw ratio) identifies the

degree of molecular orientation termed the orientation strain and has been

found essentially constant [2, 3, 16] throughout the craze length as it is in-

timately associated with the natural draw ratio of the polymer. During the

process of deformation, the stress state of an individual fibril domain is con-

sidered as uniaxial tension. Under a uniaxial stress o 33(xit), a corresponding

small strain c 3 3(xl,t) << c(xl,t), the orientation strain, of a fibril domain

will occur. The relationship between the small strain and- the tensile stress

of each fibril domain at x, is:

t 3C3 (x , T)

O33(x 1,t) = Ef(xi,t - T) dT, on x, c c, x. = 0, (12)
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where Ef(t) is the viscoelastic tensile relaxation modulus of the fibril domain

while the orientation strain c contributes no additional stress. In prepara-

tion for computation using boundary element method the traction T,(x,,t) acting

on the craze envelope at x, may be written as follows:

ft aU (x,, ")

T3 (xltt) = K(x 1,t-T) a- dr

= K(xj,0) U,(x,,t) + J K(X 3,t-t) U(xl,t) d-r, on x, c c, x. = 0, (13)

where U(x,,t) is the opening displacement measured from the horizontal center

line of symmetry of the craze corresponding to C3 3(x,t) at the boundary of the

craze envelope at x, [2] as the thickness of the primordial layer is small as

compared with U3. By writing

K(xj, t) = Ef(x,,t) (0 S t < ) (14)
U3(x,0)

then it becomes the stiffness per unit area of a craze fibril domain.

K(x1 ,O) = K(x,t)lt=O. is the initial stiffness at xj. Now we use the convolution

integral relationship (13) as the boundary condition on the craze envelope.

The tensile creep compliance Dr(t) of a fibril domain can be found. By refer-

ring to the molecular orientation theory [12], the tensile relaxation modulus

Ef(c) of a fibril domain may be represented as follows:
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Ef(c) - C()E (15)

where, as stated before, c, the orientation strain, is essentially a constant,

thus, C(c) being a function of the orientation strain is also a constant and E

is the modulus of elasticity of the original polymer medium. Therefore, if the

time dependency is introduced as given in the following equation:

Ef(c,t) - C(E)E(t). (16)

both the nature of molecular orientation and the time dependent viscoelastic

behavior of the moduli are preserved. In the Laplace domain, treat C(E) as

constant, then

Ef(E,s) C(E)(s). (17)

and

s 2E(s)D(s) 1. (18)

For individual fibril domains a similar relationship may be written as

sf(s)6f(s) = 1, (19)

where Df(s) is the tensile creep compliance function of the fibril domain in

the Laplace s-domain. Solving for Df(s), one gets

Df(s) = C-'(€)[s'E(s)]-'. (20)
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or

Dr(s) C'c~s.(21)

Thus after inversion

Dj-(t) -C)D(t). (22)

At position x,, let us write

n
Dr(x1,t) = C-'(x,,i)D(t) =C-'(X 1 3 c)1D,0 + >3 Dn[1 exp(-t/-t,)] . (23)

where

C '(x,,c) -Df(x,,o)/D 0  (24~)

is a spatial parameter, then the stiffness becomes:

______) K(x. C)D.] (25K(x1.t) =L- LI -(5

And the traction T,(x,,t) acting on the craze envelope surface equals:

T,(x,,t) [3H(xjs)U(x1 ,s)j (26)
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According to the correspondence principle in linear viscoelasticity, we

can transfer the boundary value problem of quasifracture into the s-domain

merely by replacing the elastic parameters by their corresponding time depen-

dent viscoelastic parameters in the Laplace domain s as follows:

E (

K K(xi,O)D/s2D(x,s),

(27)

(Ti) o 4 (Yi)o(s) = (Ti)o/s,

(Ui)o - (Ui) 0(S) - (Ui)o/s,

where (Ti) o and (Ui)o are respectively the prescribed constant boundary trac-

tion and displacement at point i. Once the associated elasticity solution is

obtained, then the Laplace numerical inversion will yield the time dependent

solution of the problem.

CALCULATING PROCEDURE

In order to solve the associated elasticity problem, the general integral

boundary element method may be applied. The detailed investigation of these

methods and others may be found in the literature [17-19]. For simplicity

only one approach is utilized and the basic formulation for the linear elasti-

city problem is described here. In the two-dimensional elastic continuum R

with boundary r, which is assumed to be isotropic without body force, the gov-
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erning equation may be obtained from pages 125 and 126 of reference (17) as

follows:

CiU + I TkUk dr = UjkTk dr, (k, = 1 or 3) (28)
r r

where Ci - 1/2 for point i when it becomes a boundary point on a smooth boun-

dary, Ulk is the displacement in the k direction due to a unit force acting in

the . direction at point i, Uk is the displacement at any point on the boun-

dary r In the k direction, Tk is the traction at any point on the boundary r in

the k direciton, znd Tk is the traction in the k direction due to a unit force

acting in the Z direction at point i. The fundamental solutions for the two

dimensional isotropic plane strain problem are easily written following the

equations given on pages 126 and 141 of reference [,7]. They are

U*1 3 (- 4v6kn r. a:

UEk = 8irG(1 - v) r- 4u)69kPnr) ax " X-I

(29)

-_____r ar ar
T = (1 - v)r (I - 2v)61k 2 ar- a (r - 20 -Lr - ar t]),f k =I-1 vr an 3x L -k ax 9 nK axk

where G, v are elastic shear modulus and Poisson's ratio respectively and nZ

is the outward normal to the boundary and r is the distance from the load

point to the point under consideration. Equation (29) is known as the Kelvin's

singular solution due to a point load in an infinite *lastic medium.

At first, the boundary r was divided into N elements with assumed con-

stant values of Uk and Tk in each element. By applying the viscoelastic cor-
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respondence principle, the following equations are obtained in the Laplace

domain:

+- +f UIk-k dr, (k, f. I or 3)c >_ L k~k d r - _ k r, (q = , .. ) (30)
q=1 fq q-1 IFq

As shown above there are 2N simultaneous algebraic equations. When 2N

boundary tractions and boundary displacements are given another 2N unknown

boundary tractions and boundary displacements can be obtained. For some boun-

dary elements, beginning a, say, such as rq (q = a,....N), on which the stiff-

ness boundary condition was prescribed. Equation (30) will become as follows:

Ciug + (T kUk dr + > (k - KkUk)Uk dr =

q=1 Irq q.a Irq

a-1I

q= 1 -" U k:k dr, (q = 1, 2 ...... a ...... N) (31)

By -solving the above simultaneous algebraic equations, we can obtain the

values Uk and Tk successively for discrete values in the Laplace domain.

Based upon the thermodynamic principle, Schapery [7] developed a collocation

method of numerical Laplace transform inversion. This method shows that the

components or stress and displacement at any point can be represented by a

series F(t) defined as follows:
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F(t) C, + C2 t + >- Ae -b ra t, (32)
m=1

where C,, C2, Am and bm are constants. Taking the Laplace transform of Equa-

tion (32) and multiplying by the transformation parameter s gives:

MC=, -- Am
C' + + L- (33)- s . + bml sj

When time t goes to infinity the function F(t) should be finite. Therefore.

the constant C2 is chosen to be zero. In order to determine the constants in

this equation a value for M and a sequence of values of s must be selected,

i.e.:

s =s , (6=1,2 ..... , M+1), (34)

Based upon Schapery's suggestion, the relationship between s and t is

s = 1/2t. The M values of bm are taken to be the first M+1 values of s. Then

Equation (33) can be written:

M
- Am

SaF(sS) = C1 + 1--- I + bm/S 8  (8 = 1, 2 ..... M, M+1), (35)

m=1

which is a set of M+1 linear algebraic equations with M+1 unknowns C1 and Am

solvable using standard procedures. The guidelines for selecting the discrete
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values of s can be found in Rizzo and Shippy [10].

BEHAVIOR OF A CRAZE

According to the aforementioned theory and method, an illustration is

provided by calculating the displacement field in the neighborhood of a hole in

a linear viscoelastic infinite plate. The load applied was expressed as a step

function. The contour of the circular hole has been divided into 24 boundary

elements as shown in Fig. 2. The radial displacements calculated by either

the. viscoelastic boundary element method or an analytical solution are shown

in Fig. 3. The radius of the hole is 3 m. The applied internal pressure is

100 MN/M 2 . For linear viscoelastic behavior the tensile creep compliances of

the material was represented by a generalized Kelvin model with multiple ret-

ardation times, as shown below:

Do = 0.238 x 10 - 3 m2/MN, v = 0.33,

D, = 0.071 X 10 - 3 m2/MN, 1= 1 hour,

D2 = 0.062 x 10- 3 m2/MN, T2 = 10 hours,

D3 = 0.045 x 10 - ' m'/MN, T3 80 hours,

D, = 0.031 x 10 - 3 m2/MN, = 110 hours.

As seen in Fig. 3, the computed data by the viscoelastic boundary element

method produced excellent agreement with the analytical results obtained by

transforming the classical elasticity solution of a circular hole in an infin-

ite plate into a time dependent solution in linear viscoelasticity using the

well known correspondence principle.

Now for studying the quasifracture, an idealized symmetrical craze in a

constant stress field has been considered. The craze basic structure was rep-
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resented by a slit with fiber domains distributed along the craze envelope

boundary. The distance between the top and the bottom craze envelopes has

been referred to as the craze opening displacement measured from the center

of symmetry. The stress acting on the interface of the craze was referred to

as the craze envelope stress. The total craze length considered was 2 mm

thus c - 1 mm, which is usually referred to as the craze length measured from

the center of a craze. The width of plate was B = 11.2 mm and the length of

the plate was L = 14 mm with unit thickness throughout. Because of symmetry,

a quarter of the plate containing an isolated quasifracture was divided into 58

boundary elements as shown in Fig. 4. The properties of the bulk material was

again represented by a generalized Kelvin model. The tensile creep- compli-

ances Din, retardation times Tm were given as before. The shape of the applied

stress p0 was a unit step function H(t) modified to 42 N/mM2 . The boundary

conditions used on the plate are:

T,(x, t) = K(xl,t-T) 3 1 3 T) dt

10 aT

(x1 
< c, x 3 = O), (36)

Td(xl,t) = 0

U,(x 1,t) = 0

(c <S x, S B, x, = 0), (37)

T3(xh,t) = 0

T,(x,,t) = 0

(x, = B, 0 S x, L), (38)

T,(x,,t) = 0
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T(xj,t) - 0

(0 S X B, x, L) (39)

T3(x 1 ,t) = poll(t)

U,(x,,t) = 0
(x' - 0, 0 S x, S W). (40O)

T,(x,,t) - 0

Initially by using the finite element method and considering the molecular

orientation of the fibril domains in the quasifracture [4], the initial instan-

taneous craze opening displacement U,(xj,0) and the craze envelope stress

Oc(x,,O) have been calculated. They agreed fairly well with the experimental

results. Subsequently the instantaneous stiffness K(x,O) was-calculated and

K(xl,t) determined from Expression (25). In applying viscoelastic boundary ele-

ment method, the values of s-parameter were selected ranging from 10 - 3, 10 - 2 ,

10 - 1, 100, 101, to 102 and time t was chosen as 1/25 as given earlier [7-10).

Fig. 5 shows the opening displacement U3 = w between the quasifracture envel-

ope surfaces versus the distance from the center of craze for various times

corresponding to 500, 50, 5 and 0 hours. It is seen that the quasifracture

opening displacement increases as time increases. The rate of increment is

relatively high from 0 to 50 hours. Beyond 50 hours, the opening displacement

changes slowly. However, it is interesting to find out that the stress distri-

bution has maintained its constant value as shown in Fig. 6. These results in-

dicate that the craze quasifracture behavior can be successfully analyzed

using this viscoelastic boundary element method.
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FIGURE CAPTIONS

Fig. 1 Schemastic Diagram of a two-dimensional craze

Fig. 2 Mesh division for viscoelastic infinite plate with a hole

Fig. 3 Radial displacement of viscoelastic infinite plate with a hole

Fig. 4 Mesh division for a quarter plate with a craze

Fig. 5 Creep opening displacement of the craze surface

Fig. 6 Comparison of stress distribution of craze surface in

time - 500 hours and time - 0.
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ABSTRACT

In this paper, the viscoelastic boundary element method is used to

estimate the opening displacement and the envelope stress on the

surface of an isolated crack-induced-craze system. To predict the

propagation history of both the crack and-the craze in a polymer sheet,

the material properties of the glassy polymers are represented by a

generalized linear viscoelastic model. In the calculation, the energy

absorption criterion is utilized to determine the initial breaking time

and the propagation rate. A sequence of numerical calculations of

crack-induced-craze propagation by means of the boundary element

method are carried out. Results are compared with the theoretical

micromechanics predictions. Good agreements are obtained. This

investigation illustrates that the three-step envelope stress profile is

resonably adequate for use in analyzing polymer quasifracture problems.

The stress concentration phenomenon, neglected on the Dugdale-model, is

taken into consideration in the present work.

,.,..,,,,, ,, mre m Ii I I l I n -1



INTRODUCTION

The quasifracture and fracture behaviors of a crack-induced-craze

system in glassy polymers have been investigated extensively by many

researchers both theoretically and experimentally up to now' - 8.

Generally speaking, the crack-induced-craze model in micromechanics

accentuats the opening displacement, the envelope stress distribution

around the interfaces of a craze, and especially the propagation

processes of the craze and the crack. For some of the studies5 - 7 the

opening displacement profile has been determined experimentally first,

from which the envelope stress destribution was evaluated by some

analytical methods such as Fourier transform. Whereas others obtain the

envelope stresses based upon experimental observations first, then the

opening displacement profile analytically. Some scientists6 , 9 considered

that the yield property beyond the crack tip would determine the

cracking and crazing properties, thus Dugdale model was employed.

Although Dugdale model is thought to be able to predict the overall

effect, it is questionable whether it is good enough in representing the

true behavior of cracking and crazing properties in glassy polymers.

Based on a number of experimental observations and theoretical

analyses6'7 . Hsiao et al proposed the stress step-distribution model

some years ago 2, which seems more resonable and accurate in

representing the properties of the region behind the craze tips.

Until now quite a lot of investigations on this subject matter have

been reported, among which most were done by experimental or

2



analytical method. Papers using numerical methods for predicting the

cracking and crazing behaviors have also appeared. L.Bevan' 0 , 1 1 studied

the craze micromechanics by using linear boundary element method, in

which the craze at crack tip was modeled by linear springs with

constant stiffness. However, the linear elasticity and constant stiffness

are not accurate enough to represent the properties of

crack-induced-craze system in glassy polymers since it is well known

that glassy polymers behave viscoelastically rather than elastically, and

the drawing process is the dominant mechanism in polymer crazing.

Therefore, some scientists considered the time dependent crack-craze

-propagation, such as Chern and Hsiao2 , McCartney 1 2 and Schapery' 3 who

applied the linear viscoelastic model for studying the craze or crack

propagation, and Schapery"4 ,  also studied the crack growth in

nonhomogeneous viscoelastic media for opening crack model. Some

others 15 ' 16 investigated the nonlinear quasifracture properties using

finite element method, and the time-dependent behavior of a craze using

viscoelastic boundary element method. In these studies, the polymer

material around the crack or craze has been regarded as viscoelastic

represented by a generalized Kelvin model. The relationship between the

tractions and the displacement of fibril domains in a craze was

represented by a convolution integral. Using the correspondence

principle in linear viscoelasticity and the boundary element method,-the -

time-dependent opening displacement field and the stress distribution

along the craze surfac, envelope have been calculated numerically.

In this article, the viscoelastic boundary element method is utilized

3



to study the propagation of a crack-induced-craze system. Meanwhile,

the opening displacement profile and the envelope stresses on the craze

interface surface have been obtained for different propagation steps.

For comparison, the theoretical analysis using energy balance method

was formulated, with a three-step stress distribution for calculating the

propagation of the crack-induced-craze system. And the opening

displacement profile of the crack-craze contour was also evaluated.

Because of the change of the boundary conditions during the propagation

of both the craze and the crack, Salamon's1 7 supperposition principle of

a step-like propagation has been applied to this problem, and a numerical

calculation sequence of the boundary element method has been derived.

Comparing the numerical and analytical results, good agreement has been

obtained. It appears that the step distribution of the envelope stress

used in the analysis is a good approximation suitable in dealing with

glassy polymers. The viscoelastic boundary element method has the

advantage of ease in preliminary preparation, economical in computing

time, and the required accuracy for studying the crack-induced-craze

system propagation problem may be achieved without much difficulty.

4



THEORETICAL CONSIDERATIONS

Craze is filled with load bearing highly oriented fibril domains and

cavitated networks formed by continuous flowing of the bulk polymer

during the crazing process. Based upon some experimental observations

18,19 and the craze model developed earlier 2, referring to a central fixed

(XI, x3) coordinate system, an idealized symmetric crack-induced craze

system in a constant simple stress field o"0 is shown in Fig.l. Fig.2

shows c(t) as the half length of the crack-craze system and a(t), the

half length of the crack only at time I. The stresses acting on the

interfaces are called the envelope stresses with notation Oc(xi, t) as a

function of position and time. The half distance w(x ,t) between two

craze or crack interfaces is known as the half opening displacement.

The half opening displacement of the crack-induced-craze system in

a viscoelastic polymeric sheet can be obtained by using the

correspondence principle in linear viscoelasticity theory 20 . The field

equations and the constitutive relations are:

riij (xl,x 3,t) 0, (1)

EiJ(xlx 3,t) -
[u j (x1,x3,t) + Uj,1 (x1,x3,t)1, (2)

2

ej(t) 4 J(t-tC) it d. , (3)

t 8C&kk(t)
Ekk(t) I J2(t-) dr , (4)

='"'"mI =''- a ti



whert (1, is the stress tensor, F-, the strain tensor, U,., the

displacement gradients, and J, and J 2 are respectively the shear and

isotropic creep compliance functions of the original bulk medium.

' 5ij~~~~t) = (ij Mt --- i _L kt) (5

eS W = j M -L Sij Ekk(t), (6)

with ij and k=l,3 denoting dummy variables. The boundary conditions

are,

3 1 (x, o. t) = 0 Ix, <c(t) (7)

C 33(x, o ,t) = Ic(X I.t). Ix, I<c(t). (8)

r a 33 (x .x3 , t) = o0 (t) (9)
0 0 11 (x,,x 3 ,t) = 0 as (x1

2 + x3
2)-oo (10)

L 0 13(x,.x3 .t) 0 j 0 1)

The opening displacement wo(x .t) is defined as

WO(XI t) = U3 (X1. , t) ,l xI <c(t) . (12)

To solve this viscoelastic problem, the Laplace transform of the

field equations and the boundary conditions is applied to reduce the time

dependency. Then the solution to the transformed equations can be found

by using Muskhelishvili's complex variable conformal mapping method2 1

or Westergaard's complex variable stress function method 2 2 for elastic

melium when c(t), a(t) and Cc(xt) remain unchanged-with respect to

time23 .

The time dependent solution of the original problem is obtained bu

Laplace inversion. This solution is valid only if the boundary conditions

6



are independent of time as mentioned earlier. These shortcomings can

be surmounted by using a superposition method. i.e. a sequence of loading

and unloading steps 7 ,24 , which yields.

wo(x,,t) = Cb(O) (x,,t) + 4(x1,t) dir, (13)

where

(C

(x,t)=ioI - Jcrt) ln(c+.c- j2) d q

+2C./X2- q2)d -j lclt ]nil djt (4+ c(t) ln(xw+V _)(14)11 -•X

and with an assumed constant strain ratio v. L-1 being the Laplace

inversion:

Cb(t) =.7- 2(i-s 2v 2 ) (15)

S2E

where E is the relaxation modulus of the bulk polymer and C(s)

represents the same in the Laplace domain s.

Taking into consideration of the thickness of the primordial layer

from which the fibril domain structure has been pulled out, the actuai

opening displacement of the system becomes25,26 :

)+t (t ( 16

w(x,t) = Cb(O)C(xt,t) fb(t-)(xlj,-)d-t + d) (16)-o Jtx '

where tx is the time whenihe crack-craze-system tip first-reaches the

point x1 , and X is the draw ratio. The values of X are round to be

virtually unchanged along the periphery of the craze8 , 27-31, with only a

7

t.7 - I



slightly increase in the central region and near the craze tip. Therefore.

X can be considered as a constant and the opening displacement reduces

to:

w(x -Kt) -- (Cb(O) (XIAt) + db(t-Z)$(x,,) dt I

for a(t)sx1 c(t), (1 7)

W(X1,t) = Cb(O) $(xjt)+ b(t-r)f(Xj,')d"+-w(x ,t,) ,

for Osx,sa(t), (18)

where ta denotes the time when the crac tip arrives at the point x, =a.

The crack and craze lengths can be obtained by considering the

energy balance. The energy absorbed by the craze32 is spent to nucleate

fibril domains near the craze tips, to pull fibrils out of the craze

envelope surfaceand to break the fibril boundles". With the supposition

that the fibril nucleation rate at the craze tips is proportional to the

systrm growth velocity 6(t) 3 3, the energy rate necessary for craze tip

growth is Fcc(t). Similarly, the energy rate required for the crack tip

growth is Faa(t), where Fc and r a are material constants. Based upon

the assumption that the energy rate required for drawing fibrils out of

the craze envelope surface is proportional to the new fibril domain

surface creation rate 5(t), and use the-proportionality constant FS, we

have the following local energy rate balance equation:

Hc(t) = rcC(t) -, aa(t) - rs5(t) (1 9)

8



where, H(t) is the energy absorption rate of the quadrantal system. Here

the strain energy, energy dissipation and kinetic energy have been

neglected since during steady state they are negligible compared with

the other rate quantities. With this simplification and the terms defined

earlier, it follows that 2 . 3 .3 2 -3 4

C aw(x,t)
IAj(t) = c(xiit) at dxl (20)

6(t) =j Vf(xl,t) 8w(xt) dx1, (21)d xt)t)o8

Substituting into (19) results in

Sc ( c_ 4 .- f ) aw(x,t) dx1 = rc= +r , (22)

od a t
-0

where Vf is the volume fraction of the crazed polymer and d is the

diameter of the individual fiber domains.

9



BOUNDARY ELEMENT CALCULATION

The viscoelastic boundary element method is applied to a polymer

sheet with an isolated crack-induced-craze centrally located. The sheet

is subjected to a unit step tension stress croH(t), where H(t) is the unit

step function of time t. The material properties of the bulk polymer

around the crack-induced-craze system is considered to be linearly

viscoelastic. The constitutive equation can be expressed by convolution

integral equations (3) and (4). For a linear viscoelastic polymer, a very

convenient expression for the creep compliance J(t) is obtainable by

using a generalized Kelvin model 2' 35. 36 composed of a seriers of Voigt

elements as described below:

n t (23)J(t) = JO +  .Ji (I - e_- Ei ),23
i=1

where J0 and Ji are constants and r, , retardation times. Since some

experimental results32 have shown that the strain ratio v(t) remains

virtually unchanged for long creep times, the viscoelastic relaxation

modulus E(t) can be shown to be of the following form:

E --L 1 I1 71n1(4s2J(s) =LW o+2  (24)

i=1 is+ I

where the bar indicates Laplace transform and L- 1. Laplace inversion.

Taking into consideration of the fibril structure of the craze beyond the

crack tip?'- the two opposite interfaces or the craze region are connected

by the fibrillar structure as shown in Fig.2, which is formed by a

fibrillation process due to the advances of the crack. These connections

10



are capable of transmitting load and can sustain large deformations. The

stress state of an individual fibril domain is considered as an uniaxial

tension. The relationship between the traction T3 (x,.t) and the opening

displacement U3 (xlt) of the crack-induced-craze system can be shown

as follows:

t aU3(x , -)
T3 (xl,t) = - K(Xl,t-U) - dr

t

= K(x,,O) U3(x1,t) + J R(x,t-'z) U3 (xt,t) dt, (25)

on xj<c and x3-O,

where K (x ,t) is the stiffness per unit area on the craze surface and

K (x, .0). the initial value of IC(xl , t) at x,. Using the molecular

orientation theory 6 , the stiffness turns out to be:

K(x,,t) =i K(xO) JO (26)

It should be noted that the drawing process is the main mechanism of

craze thickening. Thus K(xj,t) here is not the stiffness in the usual

sense. It must take the drawing process into consideration.

The traction T3 (x 1 t) acting along the craze envelope becomes

T3 (xl,t)=-L -' [sK(xj,s) U3 (xi-,s)]. (27)

Because of the symmetry of the problem, only a quarter of the

uniform sheet of width B, length L is considered in the boundarg element

calculation. The boundary conditions around the quadrantal sheet with

isolated crack-induced-craze system are:

11



T3(I~t 0O:Sx,~a(t), x3=0, (28)
T1(x,,t) 0 ,

T3(I~t -t K8lt-r U3(X11') r)
T3(1,) fKo it~ ar t~ a(t):5XI5C(t),X 3 =0, (29)

T 1(x11t) 0 0,

U&(xlt) 0 , C(t)<X,:SB, X3 =0, (30)
T1(x,t) 0,

{T1(x1,t) 0 , x1=B, 0:SX3 :L, (3 1)
T3(x3 ,t) 0,

{T1(x,t) 0 , 0x 1<B, x3 L, (32)
T3(x1,t) c O0H(t) ,

{ U1(x3,t) 0 , = , 5x3 L.( )
T3(x3,t) 0 0,x=00x 3 . ()

As the crack-craze syjstem propagates, new crack and craze surfaces are

created. The associated energy release rate is

D (t) = a (t) + PC t) .(31)

where FPa and PC represent respectively the coefficients of fracture work

for crack and the crack- induced-craze, and a(t) and c(t) are respectively

the crack and the sy~stem propagation rates. The energy absorption rate

for the crack- induced-craze system is expressed by Eq. (19). The energy

absorption criterio n claims that

6(t) =HA(t)

i.e. raimt + rc6(t) ac~XIl)8( 1t) dx1  (35)

12



q.

In addtion, sometimes the constant crack opening displacement criterion

can be used as the propagation criterion of the crack-induced-craze

system. But these two criteria are the same if the deformation

associated with the crack tip is fixed with respect to time, a situation

which occurs when the applied stress is constant. Thus both the crack

and the craze propagate at the same velocity37. In this case, the opening

displacement of the crack-induced-craze system is of the form:

U3 (x1 ,t) = f[x 1 -c(t)] . (36)

which means that the shape of the crack and that of the craze are

conserved during the propagation, i.e.

dU3 = -c(t)f'[x1-c(t)] (37)dt

If the envelope stress is considered as the following step functional

distribution:

1 XICo a(t) _<x I <__b(t) ,
c =  (38)CC 2(?o b(t) < x1 <_ c(t) , (8

where c(t)-b(t) is a small quantity representing the stress growth at the

craze tip, then in the analysis, the energy absorption criterion formula

(35) will be:

rI0 (t) + rc(t) = JoC0-3dx, + lb2 o- dx,, (39)

ra + rc = o010<1 U3 (a,t) - (x -c 2 )U 3(b,t)], (40)

where U3(at)=U3(xl,t)lx::a and U3(b,t)=U3(xl,t)1x =b , are the

opening displacements of the crack tip and the craze tip respectively.

13



Noting, that U3 (bt)<<U3 (a.t), Eq.(40) becomes:

U3(a,t) =p + c(41)

which is the constant crack opening displacement criterion in linear

fracture mechanics. Therefore, in the theoretical and numerical analyses

of the propagation of crack-induced-craze system, either the energy

absorption criterion or the crack opening displacement criterion may be

applied to determine the propagation rates at different times.

The viscoelastic boundary element method for analyzing crack-

induced-craze system in polymers has been described in detail in an

earlier study'6 . Using the correspondence principle in linear

viscoelasticity theory, a series of transformed simultaneous algebraic

equations can be solved. The displacement Uk and traction Tk on the

boundary involving the crack-craze surface can be obtained in the

Laplace domain. Based upon Schapery's collection numerical method 38

for Laplace inversion, the components of the stress and displacement

fields at any point can be represented for the fixed time t by the series:

M bmt
F(t) = CO + C1 t +  Am e  (42)

m=1

with Co , CI, Am and bm being constants. Taking the Laplace

transformation of Eq. (42) and mutiplying by the transform parameter s

yield:

CO M Am (43)
S bm

M=I I+ -
1

14



where- F(s) designates the Laplace transform of a time function F(t).

When time t goes to infinity the function F(t) should remain finite.

Therefore the constant C, has to be chosen as zero. After a sequence of

sk (k=l,2, ... 1+I) is selected, the constants Co and Am's can be

calculated by the viscoelastic boundary element method, and the opening

displacement U3 j and the envelope stress T3 j on the jth boundary

element of crack-craze system surface for time t become

M

U3j = Dej  + Dmi e -(m t, (44)
m=1

M
T3 j= GO .+ Gmi e-mt -(45)

m=1

Substituting the above two equations into the energy absorption criterion

(35) for fracture, the breaking or the initial propagation time t of the

crack-craze system for discreted boundary elements will be of the form:

tb= (re + (46)

N T 4V dU3-

where -T is the length of the boundary element on the crack tip and I

the jth element length on the crack-craze system, U3 j and T3, are

respectively the displacement and the envelope stress on jth boundary

element of the crack-craze system surface before propagation. After

the commencement of the propagation of the crack-craze system, both

the boundary shape and the boundary conditions will change as a function

of time. Therefore, the numerical solutions U31 and T31 are not valid for

15



propagating crack- craze system because the linear viscoelastic

correspondence principle can only be applied to the problem with time

independent boundary conditions. These restrictions can be removed by a

generalized method of superposition principle, which uses stepwise

development boundary conditions formulized by Salamon' 7. This method

is utilized here to deal with the changing boundary conditions. A time

dependent function F(t) after n steps in the time interval tn<t<tn I may

be expressed as follows:

N-I
F(t) = (Fir i ,(t-ti)] - Fi[ri,(t-ti,)]) + Fn[rn ,(t-tn)], (47)

i=

where r i is some critical linear dimension and F the solution, i.e. the

opening displacement or the traction, which can be solved by the linear

viscoelastic correspondence principle in the ith time step, t n and tn

are the nth and the (n+l)th time steps. Similarly, the envelope traction

T3, and the displacement U3, on jth element of the cr~ck-craze system

after the nth element propagates can be writen as:
M

(n ) (1) CKt + 3 -. + .
: Dij (e- itl -1) e (t2+t3

i:l

MD (e - e- (t 3 +t 4 + +t n ) .

i:1

+ DI (e- itnl -citn
i:1

(n€ ) -(X t _. (n))
+ D -ij e it( + DO(4)

16



T(n)3j Gij  (e-it1 -1) e- $ i (t + t3+ ' ' +tn)i::1

SG (e$it2 - 1) ......

i=1SLj-(n-1) ( $ t n~ - -1) e - f i t n

M + Gij (ei

+ _ _i e- + G (49)

According to the principle, the calculation procedures are expounded as

follows. The first step is to calculate the coefficients Dj and Gi jon

the-jth element using the viscoelastic boundary element method, in

which the length of crack is a, and that of the crack-craze system c1 .

Then substituting Dij and Gj (i=0,1,...Nl) into Equation (35) the

transition or the initial breaking time can be obtained. After that, both

crack and craze propagate a distance of one element length for the

steady state propagation case. Correspondingly the boundary conditions

on the craze surface will shift forward by a length of one element. The

second step is the calculation of D.j and G.j (i=Ol, ... M) on the jth

element using the same viscoelastic boundary element method. But at

this- time the length of crack is a1+_ and that of system c1 +.9, where 9Q

is the length of an element. Substituting these coefficients, together

with Dii and G.. , into Equations (25) and (26), the opening displacement

U31 of the system surface, the envelope traction [ 1 can be obtained.
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The breaking time t for the system to propagate to the next element can

again be calaulated from the energy -ibsorption criterion Equation (35).

The same procedure continues to be iterated until the system grows to

the nth element. At that time, the coefficients D1i and G.j are

evaluated. And the opening displacement U31 and the envelope stress T3j

on the jth element can be obtained at time tn -
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RESULTS

A quarter of the sheet used in the calculation using the boundary

element method has unit thickness, width B=500pm and length L=60Opm.

The initial lengths of the system and the craze are taken to be

c(O)=98jim and a(O)=381im respectively. The total number of the

boundary elements is 155 with the smallest element of the length 4pm

located on the craze surface. The mesh construction is shown in Fig.3,

where the elements around the craze tip are drawn in an enlarged scale.

The surface of the crack-induced-craze system is divided into 23

boundary- elements. Beyond the craze tip there are 10 elements in 4Opm

span.

- The viscoelastic material properties are represented by a generalized

Kelvin model (23) with other material constants taken to be as follows:

n =4,

Jo =4.17x10-4 m2/lMN

J1, =0.71 x10 - 4 m2/llN

J 2 =0.62 x10-4 m2/MN

J 3 =0 - 4 3 x10 - 4 m 2 /N,

J 4 
= 0 .31 xlO- 4 m 2 /lN

v =0.3 ,

v, = 1.0 hr.

V2 = 10.0 hr.

Z 3 =80.0 hr.

Z 4 = 110.0 hr.

FC =0.3 J/m 2
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ra =2.72 J/m 2

oc, =1.21

CK2 =2.58

The following quantities occuring in the calculations of theoretical

method are also used
39-4 1

X =2

rs =0.231 J/m 2

d =4.4 nm

which represent the properties of polycarbonate. The applied stress is

0o0 = 37.4 MN/m.

The first kind of calculation is based upon the stiffness distribution

shown in Fig.4. Correspondingly, the instantaneous opening displacement

of the crack-induced-craze system is plotted in Fig.5 against the

distance measured from the center of crack. The data points indicating

the experimental observations6 , 8 , triangles represent the theoretical

solutions, and the solid curve is the result obtained by the boundary

element method. Initially the distribution of the stress normal to the

surface is shown in Fig.6.

When the applied constant stress 00 is maintained, the opening

displacement of the -system increases as a result of creep and the

drawing of the fibril domains. According to the energy absorption

criterion, the craze-crack transition time tb=tl can be determined

numerically. Then the crack-craze system propagates steadily and the

case that the crack and the system have the same velocity9 is considered

here. During the calculation of the propagation rate the stiffness on the

20



crazeesurface is shifted stepwise by one element. Fig.7 shows the time

dependent normalized lengths of the crack-induced-craze system, where

the points are obtained by the boundary element method and the solid

line is calculated by theoretical method. As can be seen from the figure.

the propagation rate at the steady state is almost constant. After a

certain period of time, both the crack and the system propagation rates

increase drastically. The opening displacement profile of the

crack-craze system as a function of time is shown in Fig.8. The opening

displacement profiles at different times exhibit somewhat similar

shape. Fig.9 shows the comparison between the results obtained by the

boundary element method and the analytical results at time t=12.21

hours. A very good agreement is obtained. Fig.10 shows the envelope

stress distribution in the craze region.

The closeness between the theoretical results and those obtained

by the boundary element method in Figs. 5, 7 and 9 connotes that the

boundary element results are generally in good agreement with the

analytical results. The accuracy depends on the mesh construction and

the type of element used. Constant elements used in the boundary

element calculation procedure yield satisfactory results in this case.

The use of higher order elements, such as first -and second order

elements, or much smaller elements would improve the accuracy. The

stress distribution-on the craze surface has almost the same shape and

magnitude throughout the propagation. In fact, it has been suggested

that the Dugdale model is not fully adequate for analysis in describing

the craze envelope stress. Nevertheless, the analytical formulation
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using, the three-step distribution function has been shown to be a

resonable and good approximation for analyzing the isolated crack-craze

system. As can be seen in Figs. 6 and 10, there is a deep stress

minimum just behind the tip of the craze. This characteristic feature

persisted during the course of this investigation. This is somewhat

similar to the results obtained earlier using the finite element method.

Two extreme values in the envelope stress distribution have occurred.

Like in the present case a minimum envelope stress is located at some

point behind the craze tip where the stiffness gradient changes sharply

and a maximum one occurs at the tip. -Both of these extremes have been

obtained- by either analytical or experimental methods. 1.2 .4 2.43 .4 4  it is

hoped that this phenomenon will be studied further to acquire a better

understanding of its behavior with respect to the crack-craze system.
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EIOVRIES

Fig. I Schematic fibrillar structure of a two-dimensional crack-

induced craze system.

Fi'g.2 A two-dimensional quadrantal crack-induced-craze system.

Fig.3 Boundary element mesh with craze tip shown in an enlarged

scale.

Fig.4 Stiffness distribution in craze region.

Fig.5 Opening displacement profile of crack-craze system.

Fig.6 Initial envelope stress on surface of craze region.

Fig.7 Time dependent normalized length of crack-induced-craze

system.

Fig.8 Opening displacement of crack-craze system at several time

steps.

Fig.9 Comparison of opening displacements by boundary element

method and theoretical analysis.

Fig.1O Envelope stress on craze surface at time=12.21 hours.
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